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Abstract: Uncertainties in hydrological simulations can be quantified and reduced through data
assimilation (DA). This study explores strategies for assimilating soil moisture (SM) data from Cosmic-
15 Ray Neutron Sensors (CRNS) and groundwater level (GWL) data into the Terrestrial System Modeling
Platform (TSMP), which integrates both land surface and subsurface processes. DA experiments
incorporating both state and parameter estimation were performed using the localized Ensemble Kalman
Filter (LEnKF) within a representative catchment in Germany over the period 2016 to 2018, with cross-
validation conducted on non-overlapping years. Univariate assimilation of SM reduced the unbiased root
20  mean square error (ubRMSE) by approximately 50%, while univariate assimilation of GWL achieved up
to a 70% reduction in ubRMSE at assimilation sites. Improvements in GWL estimates extended up to 5
km from the assimilation points, with ubRMSE reductions ranging between 2% and 50%. However,
assimilating GWL independently had a negative effect on SM representation, and similarly, assimilating
SM alone degraded GWL predictions. To address these issues, a novel multivariate DA framework was
25 developed, enabling SM and GWL to be assimilated independently through separate modules.
Groundwater data were used to constrain the water table position, thereby improving the estimation of
the boundary between unsaturated and saturated zones and allowing updates to hydraulic conditions
within the saturated zone. Meanwhile, SM data improved the representation of hydrological processes in
the unsaturated zone. The multivariate assimilation approach resulted in comparable improvements in
30 GWL, SM, and evapotranspiration (ET) at the assimilation sites. Moreover, including parameter

estimation alongside state updating further reduced the ubRMSE by up to 17%.

1. Introduction

Subsurface hydrologic states such as root zone soil moisture (RZSM) and groundwater level (GWL) are
35 critical in regulating surface-subsurface water interactions in hydrologic and land modeling frameworks

(Zhang et al., 2016; Maxwell and Condon, 2016). Shallow groundwater controls fluxes between saturated
1
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and unsaturated zones, directly influencing SM dynamics and evapotranspiration (ET) (Chen and Hu,
2004; Scanlon et al., 2023). Accurate representation of RZSM and GWL is crucial for quantifying
coupled water-energy exchanges across the soil-plant-atmosphere continuum (Sehgal et al., 2024).

40 However, conventional land surface models often neglect groundwater-surface interactions and their
impact on land-atmosphere exchanges (Gleeson et al., 2021; Maxwell et al., 2007; Maxwell and Condon,
2016). Integrated frameworks like the Terrestrial System Modeling Platform (TSMP) (Shrestha et al.,
2014) simulate complex interactions among subsurface hydrology, soil processes, vegetation, and
atmosphere, effectively capturing spatiotemporal GWL dynamics and their influence on terrestrial

45 ecosystems (Gasper et al., 2014; Kollet et al., 2018; Shams Eddin and Gall, 2024).

Complicated coupled models often involve many parameters, introducing uncertainty and reducing
forecast reliability. In groundwater modeling, parameterization simplifications and assumptions cause
significant uncertainties due to spatial variability in hydraulic properties and limited in-situ data (Xu et
al., 2017). Additional uncertainties stem from input forcings, initial states, and model structure (Beven,

50 2006; Herrera et al., 2022). Data assimilation (DA) reduces uncertainties in model parameters and states
by integrating observations to improve predictions (Liu et al., 2012). The Ensemble Kalman Filter (EnKF)
is a widely used sequential DA method that effectively handles complex, high-dimensional nonlinear
hydrologic and terrestrial system dynamics (Evensen, 2009; Houtekamer and Zhang, 2016; Evensen,
2003). EnKF has been shown to enhance SM prediction in land surface models (Dan et al., 2020; De

55 Lannoy et al., 2007) and improve groundwater table simulations in subsurface hydrological models
(Chen and Zhang, 2006; Tang et al., 2024).

Terrestrial SM can be estimated across various spatial scales using in-situ and remotely sensed (RS)
data, which are often assimilated into land surface models to enhance simulation accuracy (Han et al.,
2015; Gebler et al., 2019; Strebel et al., 2022). However, in-situ measurements have limited spatial

60 coverage and temporal continuity (Nicolai-Shaw et al., 2015), while RS products like Soil Moisture
Active Passive (SMAP) (Kwon et al., 2024; Zhou et al., 2022; Seo et al., 2021) and Soil Moisture Ocean
Salinity (SMOS) (Tangdamrongsub et al., 2022; Hostache et al., 2020) offer broader coverage but with
coarser resolution, shallow sensing depth, and greater uncertainty. These limitations hinder effective DA,
particularly in high-resolution modeling (Zhou et al., 2020; Shen et al., 2024). As an alternative, Cosmic-

65 Ray Neutron Sensors (CRNS) (Zreda et al., 2008) provide reliable, non-invasive SM estimates at the
field scale (~18 ha), with deeper penetration (~80 cm) and reduced bias compared to RS products (Zreda
et al., 2012; Kohli et al., 2015; Bogena et al., 2022). CRNS thus bridges the scale gap between point
measurements and model grids, offering an effective data source for improving SM representation in DA
frameworks (Shuttleworth et al., 2013; Han et al., 2015; Baatz et al., 2017; Mwangi et al., 2020).

70 Groundwater table depth is typically monitored via observation wells. Most groundwater DA studies
have relied on synthetic experiments. For example, Chen and Zhang (2006) showed that EnKF can
reconstruct hydraulic conductivity using synthetic head data. Subsequent studies (Hendricks Franssen
and Kinzelbach, 2008; Tong et al., 2011) highlighted the benefits of localization in LEnKF to mitigate
filter divergence and improve parameter estimation. Panzeri et al. (2013, 2014) introduced EnKF variants

75 tailored to groundwater DA by solving ensemble-based flow dynamics. These efforts demonstrate
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EnKF’s effectiveness in handling nonlinear, high-dimensional groundwater systems. However, even with
synthetic data, EnKF requires careful adaptation-such as localization-to avoid filter instability. Real-
world applications pose greater challenges, demanding further modifications to enhance DA performance.
Most DA research has focused on single Earth system components, typically assimilating one
80  variable. However, groundwater and SM are strongly interconnected, and multivariate DA is essential to
capture their interactions. Recent studies have applied multivariate EnKF within coupled models like
CATHY and Flux-PIHM, demonstrating improved estimates of hydrologic states and parameters
(Camporese et al., 2009a; Shi et al., 2014; Botto et al., 2018; Shi et al., 2015). While multisource
assimilation enhances simulation accuracy, it may reduce performance for unassimilated variables. Using
85 MIKE-SHE, Zhang et al. (2016) highlighted the importance of spatial and variable-based localization in
assimilating SM and groundwater head. Yet, its unsaturated flow is still modeled in one dimension,
limiting full system representation.
The coupled modeling system TSMP integrated with Parallel Data Assimilation Framework (PDAF)
(Nerger et al., 2005) has been utilized for the assimilation of both synthetic and observed SM or
90 groundwater data across various spatial scales. Kurtz et al. (2016) showed its capability in simulating
terrestrial states and quantifying uncertainties. Subsequent studies (Gebler et al., 2019; Li et al., 2023a)
demonstrated improved SM estimates through assimilation of in-situ and CRNS-derived SM. Brandhorst
and Neuweiler (2023) found that jointly updating van Genuchten parameters, porosity, and saturated
conductivity optimized SM forecasts. Li et al. (2023b) improved GWL estimates using LEnKF with real
95 GWL data. While most TSMP studies focused on single-variable assimilation, Zhang et al. (2018) and
Hung et al. (2022) explored joint assimilation of SM and groundwater in synthetic domains, highlighting
the benefits of weakly coupled approach (only updates the saturated subsurface states) in more complex
domain. Further research is needed on multivariate assimilation in real-world settings.
Given the challenges of jointly assimilating SM and GWL data into the integrated TSMP framework
100 under realistic conditions in the German Rur catchment, we propose a novel multivariate assimilation
method. This study aims to: (i) evaluate the effectiveness of simultaneously assimilating CRNS-based
SM and GWL observations using the new method; (ii) compare assimilation performance across different
multivariate DA strategies; and (iii) demonstrate the advantages of the proposed approach over
conventional single-variable assimilation in improving SM, GWL, and ET predictions. To our knowledge,
105 this study represents the first attempt to simultaneously assimilate in-situ CRNS SM and observed GWL
data within TSMP at the catchment scale.

2. Data and Methodology
2.1 Rur catchment

110 This study focuses on the Rur catchment (Fig. 1), which covers approximately 2354 km? and is mainly
located in western Germany, with a small portion extending into the Netherlands and Belgium. The Rur

River originates in the southern highlands and flows northward, descending gradually in elevation from

3
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about 690 m to 15 m above sea level. Elevation strongly influences the regional climate: mean annual
temperature decreases from around 10 °C in the northern lowlands to approximately 7 °C in the southern
115 mountains, while precipitation increases from 650 mm to nearly 1300 mm (Bogena et al., 2018). Potential
evapotranspiration declines with altitude, ranging from 850 mm in the north to 450 mm in the south
(Montzka et al., 2008). Land use varies spatially; the northern lowlands are primarily dominated by
agricultural fields-mainly maize and wheat-and extensive grasslands. In contrast, the southern
mountainous zone is predominantly forested, featuring both coniferous and broadleaf vegetation types
120 (Waldhoff and Lussem, 2015; Shukla et al., 2023). Additionally, lignite extraction through open-pit
mining and urban infrastructure constitute significant components of the land use pattern (Shukla et al.,
2023). Hydrogeological characteristics also differ markedly across the catchment: the southern
mountainous area is dominated by consolidated bedrock that limits aquifer permeability and groundwater
recharge, whereas the northern lowlands, composed of loose sediments, enable higher rates of

125 groundwater recharge (Bogena et al., 2018).
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Figure 1. (a) Elevation map of the study area, accompanied by (b) the spatial distribution of hydrological
monitoring infrastructure, including groundwater wells, cosmic-ray neutron probes, and flux measurement
130 towers.

2.2 Terrestrial System Modeling Platform (TSMP)

The TSMP framework was developed as a fully coupled land-energy-hydrology model to simulate
vertical and lateral exchanges of water and heat across the surface-subsurface continuum (Shrestha et al.,

135 2014). In this study, only the Community Land Model (CLM, version 3.5) (Oleson et al., 2004; Oleson
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et al., 2008) was employed to simulate terrestrial surface dynamics, while ParFlow (Kollet and Maxwell,
2006, 2008; Kollet et al., 2010), a three-dimensional simulator of groundwater dynamics under variable
saturation conditions, was used for subsurface modeling. These two models are coupled through a two-
way interaction using the Ocean Atmosphere Sea Ice Soil Model Coupling Toolkit (OASIS-MCT)
140 (Valcke, 2013), which enables the exchange of variables and fluxes between them. Within TSMP, CLM
primarily simulates water and energy exchanges, including ET from soil and vegetation, as well as
processes such as snow accumulation and melting (Oleson et al., 2004; Oleson et al., 2008). The
terrestrial surface heterogeneity is represented in CLM via a hierarchical subgrid system, where
individual grid cells are subdivided into distinct land units such as glaciers, lakes, wetlands, urban areas,
145 and vegetated areas. Each land unit may consist of multiple soil or snow columns, within which different
plant functional types (PFTs) with unique physiological characteristics can be specified (Oleson et al.,
2008). Subsurface hydrology and the representation of surface and groundwater dynamics are handled
by ParFlow within the TSMP framework, which takes over soil water movement, overland flow, and
aquifer interactions from CLM (Ashby and Falgout, 1996; Jones and Woodward, 2001; Maxwell, 2013).
150  ParFlow couples a two-dimensional surface flow module with a high-performance three-dimensional
solver for saturated-unsaturated subsurface flow (Kollet and Maxwell, 2006). It employs the Newton-
Krylov iterative algorithm (Jones and Woodward, 2001) to solve the coupled partial differential equations
governing interactions between surface and subsurface hydrological systems, including the three-
dimensional form of Richards’ equation (Richards, 1931) for saturated and unsaturated flow, and the
155 kinematic wave formulation (Lighthill and Whitham, 1955) to simulate surface runoff. Designed for
parallel computing, ParFlow efficiently manages large-scale, high-resolution, and highly heterogeneous
problems. Further details on the coupling mechanism between CLM and ParFlow are provided in Kollet

and Maxwell (2008).

160 2.3 Model Forcing Data and Observations
2.3.1 Forcing Data from Atmospheric Reanalysis

The TSMP model utilized atmospheric forcing derived from the COSMO-REA6 reanalysis dataset,
which provides high spatial resolution of approximately 6 km (0.055°) and hourly temporal frequency.
This dataset, produced by the German Meteorological Service (DWD), was generated through
165 simulations of the COSMO numerical weather prediction system (Baldauf et al., 2011; Borsche et al.,
2016). The primary meteorological variables used to drive TSMP include precipitation, air pressure,

specific humidity, air temperature, wind speed, as well as incoming longwave and shortwave radiation.

2.3.2 Terrestrial and Subsurface Data

170 The Shuttle Radar Topography Mission (SRTM) version 4 dataset with 90 m resolution (Jarvis et al.,
2008) provided the digital terrain for the Rur catchment (Fig. 1). Land cover classification was based on
Sentinel-2 imagery (Phiri et al., 2020; Drusch et al., 2012) and mapped to PFTs in CLM following
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Montzka et al. (2021). Monthly leaf area index (LAI) data for 2016-2018 were retrieved per PFT using
the Sentinel-2 Level 2 Prototype Processor (SL2P) within SNAP (Weiss and Baret, 2020). SL2P employs
175 an artificial neural network trained on global LAI and biophysical data, including PROSAIL-simulated
canopy reflectance (Chander et al., 2009; Verrelst et al., 2016; Poulter et al., 2023). For pixel-level LAI
estimation, the model inputs include Sentinel-2 canopy-top reflectance and geometric factors such as
solar illumination and viewing angles derived from satellite orbit data.
Figure 2 shows the distribution of soil sand and clay fractions derived from the BK50 soil map of
180  North Rhine-Westphalia, which has a mapping scale of 1:50,000 (Geologischer Dienst NRW, 2009). Bulk
density information was obtained from the European Soil Database (Pano, 2006). These soil texture and
density datasets were then used to estimate soil hydraulic properties via the Rosetta pedotransfer
functions, as described by Schaap et al. (2001) and Zhang and Schaap (2017). Furthermore, the HK100
subsurface geology map, produced at a scale of 1:100,000 by Geologischer Dienst NRW (2011), supplied
185 the data necessary to define the hydraulic conductivity (K;) for the aquifer layers.
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Figure 2. Spatial distribution of sand (a) and clay (b) fractions, along with hydraulic conductivity of aquifer
layers (c) within the Rur catchment.

190
2.3.3 Field Measurements of Soil Moisture, Groundwater, and Evapotranspiration

Soil moisture observations were obtained from 13 CRNS sites (see Table 1) distributed across the Rur

catchment within the TERrestrial Environmental Observatories (TERENO) framework (Bogena et al.,

2018), with preprocessing carried out through the COSMOS-Europe project (Bogena et al., 2022). To

195 prevent redundancy caused by spatial proximity, measurements from Rollesbroichl and Rollesbroich2
were aggregated into a single representative value, resulting in 12 effective CRNS sites used for DA.

Groundwater table depth data for assimilation and independent validation were obtained from the

Geoportal NRW platform (www.geoportal.nrw, accessed May 2, 2025). Given the weak hydraulic

connectivity between the RZSM and the deep confined aquifer, this study focused on assimilating data

200 from the unconfined upper aquifer. Wells selected exhibited observation depths between 0 to 20 meters

and supplied records with at least monthly observations. In total, 616 wells met these criteria during the

2016-2018 period (Fig. 1). Due to the 500 m model resolution and the spatial clustering of observation
6
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wells near rivers, multiple wells were often located within a single grid cell or within river cells. To
address this, a well selection criterion was applied: if more than one well existed within a grid cell, the
205 well with the median GWL was retained. Additionally, grid cells adjacent to stream networks were
excluded from the assimilation process, as persistent saturation in these areas caused large discrepancies
with observed values. Following these procedures, 78 wells were selected for DA, while the remaining
465 wells were reserved for validation.
Evapotranspiration estimations from various DA experiments were assessed against flux
210 measurements obtained from three eddy covariance monitoring sites located at Selhausen, Rollesbroich,
and Wiistebach. These datasets were made available through the TERENO  infrastructure
(https://www.tereno.net/; last retrieved on August 26, 2024). The eddy covariance-based ET data were
quality-controlled, gap-filled, and energy-balance corrected following the procedures outlined in Bogena
etal. (2018).

215
Table 1. Key site-specific information for the CRNS stations.

Mean air
Name Latitude Longitude Altitude Mean annual temperature Land use
(degr) (degr) (m) precipitation (mm y™) €0)

Aachen 50.80 6.03 232 865 103 crop
Gevenich 50.99 6.32 107 718 10.3 crop
Heinsberg 51.04 6.10 58 722 10.3 crop

Kall 50.50 6.53 505 857 8 grassland

Kleinhau 50.72 6.37 374 614 9 grassland

Merzenhausen 50.93 6.30 91 718 10.3 crop
Rollesbroichl 50.62 6.30 515 1018 7 grassland
Rollesbroich2 50.62 6.31 506 1018 7 grassland

Ruraue 50.86 6.43 100 718 103 grassland

Selhausen 50.87 6.45 101 718 10.3 crop
Schoneseiffen 50.52 6.38 611 870 7 grassland

Wildenrath 51.13 6.17 72 722 10.3 needleleaf

Wiistebach 50.51 6.33 605 1401 7 spruce

2.4 Localized Ensemble Kalman Filter for Data Assimilation

Data assimilation consists of two main phases: the prediction phase and the correction phase (Carrassi et

220 al., 2018). During the prediction phase, system state estimates are generated solely based on prior

historical information. In the correction phase, these predictions are updated by integrating current

observational data, which refines the estimates of states and/or parameters and subsequently updates their
probability distributions (Mclaughlin, 2002).

Hendricks Franssen et al. (2011) developed a method using an augmented state vector to enable the

225 simultaneous assimilation of multiple variables and model parameters. In this study, the focus is on
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updating soil water content (¢) and groundwater levels, represented by the piezometric head (4). To
address parameter uncertainty, hydraulic conductivity (Kj) is also included in the update process. These
variables and parameters are combined into a single vector within the EnKF framework, structured as

follows:

| e
“ P = (logm(Ks))_ logyo(K;) §

State and parameter updates are carried out by integrating observations from SM and GWL
(represented as /) into a unified observation vector.

The update formula for y is computed individually for each member j (=1, ...., N) of the ensemble
as outlined in Evensen (2003). To generate the ensembles, this study considered the uncertainties from

235 both atmospheric inputs and model parameters (e.g., K and porosity). The update equation for each
realization is as follows:

¥ = ¥ + aK(; — HY)) @
where v/ and y represent the prior and posterior state-parameter vectors for the j™ realization, y;
denotes the measurement vector (e.g., @ and /), K stands for the Kalman gain matrix, and o is a relaxation

240 coefficient (or called damping factor) for parameter (logi0K;) update, with values ranging from 0 to 1.
This step is essential to prevent covariance underestimation, a phenomenon that may arise when the
ensemble Kalman filter is employed iteratively with limited realizations, leading to a reduced estimate
of the ensemble spread (Hendricks Franssen and Kinzelbach, 2008).

The K matrix is defined by the following equation:
245 K = PHT(HPH + R)™! 3)
The observation operator H links the observation vector to the state vector. The matrix P represents
the covariance of the model states and uncertain parameters, while R denotes the covariance matrix for
measurement error. The performance of the filter relies on the state-error covariance matrix P, which is
estimated based on the members of ensemble (Evensen, 2003; Houtekamer and Mitchell, 1998).

250 Due to the small ensemble size, spurious correlations may arise between distant model grid points,
potentially distorting the covariance estimation. To address this, we employed the localized EnKF
approach introduced by Houtekamer and Mitchell (1998), which incorporates spatial localization to
confine observational influence within a specified radius (Hamill et al., 2001). This is achieved by
modifying PH” to poPH™ in Eq. 3, where the Schur product involves a localization matrix p and the

255 original cross-covariance. The localization weights in p are computed using a compactly supported fifth-
order function proposed by Gaspari and Cohn (1999), ensuring smooth spatial falloff of influence.

The correlation w, representing an element in p that links a grid point to an observation, can be

approximated as follows:

1 (e\5 1 [e\* 5 ()3 5
1-36) +30) +:0) -3 G=e=i
w(l,e)z 1 [e\® 1 /e\* 5 fe\3 5 fe\2 e 2 e\ ! (4)
56 =30 30 +20) s +e-2() L t<esu
0, e > 2l
260 Here, [ refers to the chosen localization radius, while e indicates the direct distance from the

8
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measurement location to the particular grid cell being analyzed. The correlation value o varies with this
distance, attaining a maximum of 1 directly at the observation point and gradually decreasing to zero
once the distance exceeds twice the radius /.
In this study, SM observations for assimilation were obtained from CRNS. As CRNS measurement
265 depth depends on SM conditions, it was first estimated following Schrén et al. (2017). The PDAF
framework then mapped CRNS data to soil layers within the estimated penetration depth (Fig. 3),
allowing updates to the simulated SM profiles. After assimilation, modeled SM was aggregated using a
weighted average and compared to CRNS data for validation, as detailed in Schron et al. (2017). With a
localization radius of ~100 km, exceeding the domain size, assimilation effects covered the entire area.
270  However, the fifth-order polynomial (Eq. 4) ensured update magnitudes decreased with distance. SM
was updated daily, assuming a measurement error of 0.03 cm®/cm?.
Within the TSMP-PDAF framework, GWL observations were converted to pressure head values for
saturated layers based on hydrostatic equilibrium (Zhang et al., 2018). The saturated zone was defined
using the shallowest water table values from the ensemble. An update range was constrained using a
275 horizontal localization radius of 5 km, derived from spatial correlation patterns of GWL. Due to the slow
temporal variation of groundwater, pressure head was updated weekly. GWL measurement uncertainty
was set to 0.05 m.
Earlier research by Zhang et al. (2018) showed that assimilating SM and/or GWL in TSMP leads to
updates across all subsurface states (fully coupled DA). Later, Hung et al. (2022) found that limiting
280  updates to saturated zones via GWL assimilation improved performance when using a realistic 3D
subsurface. In this study, a weakly coupled DA scheme was developed for joint assimilation of SM and
GWL to enhance update robustness. This approach updates only saturated cells using GWL and only
unsaturated zones using SM. The multivariate DA adopted the same settings as the univariate cases,
including localization and assimilation intervals. K was updated every 7 days using a fixed damping

285 factor of 0.1. To avoid numerical instability, saturated cells near rivers were excluded from updates.
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Figure 3. Conceptual diagram illustrating the assimilation of CRNS-based soil moisture and groundwater
9
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level (pressure head) observations into the TSMP system (CLM-ParFlow) using the PDAF framework. Here,

290 ¢ and 6 represent the predicted and updated states of soil moisture in the unsaturated zone, respectively,
while 7/ and h“ denote the predicted and updated pressure heads in the saturated zone. Groundwater level
measurements are converted into pressure head values to serve as input data.

3. Setup of Model and Experiments
295 3.1 Generation of Ensemble Members

To represent input uncertainty, the CLM-ParFlow system was perturbed by modifying atmospheric
forcings and subsurface properties, including saturated hydraulic conductivity and soil porosity, resulting
in 128 ensemble realizations. Table 2 summarizes the statistical metrics of meteorological perturbations.
Precipitation, air temperature, and shortwave and longwave radiation were stochastically perturbed using

300 a multivariate normal framework with temporal dependencies. A first-order autoregressive model was
applied to capture temporal structure (Han et al,, 2015). Standard deviations and time-series
dependencies were informed by previous regional-scale DA studies (Reichle et al., 2010; Baatz et al.,
2017). To preserve mass-energy balance, lognormally distributed noise with correction was added to
shortwave radiation and precipitation (Yamamoto, 2007).

305

Table 2. Statistics of atmospheric variable perturbations. The last column presents their cross-correlations,
arranged in the same order as the variables listed in the first column of the table.

Variables Noise Standard deviation Time correlation scale Cross correlation

Precipitation Multiplicative 03 24h [1.0,-0.8,0.5,0.0,

Shortwave radiation Multiplicative 0.2 24 h -0.8,1.0,-0.5,04,
Longwave radiation Additive 20 W m? 24 h 0.5,-0.5,1.0,0.4,
Air temperature Additive 1K 24h 0.0,0.4,0.4,1.0]

The model domain is discretized at 500 m resolution horizontally and extends 100 m vertically with

310 25 layers of increasing thickness. The top 10 layers (to 3 m depth) align with CLM-defined soil layers,
while deeper layers represent bedrock. Porosity and hydraulic conductivity were perturbed separately in

soil and aquifer zones. Soil hydraulic parameters for the Mualem-Van Genuchten model were derived

using Rosetta (Schaap et al., 2001; Zhang and Schaap, 2017), based on geostatistically simulated sand

and clay content using a spherical variogram (mean 0, variance 50%?2, range 12.5 km). Silt was calculated

315 as the residual. Soil textures were constrained to 0~100%, and Rosetta estimated spatially variable
porosity and K. Aquifer K values were taken from a hydrogeological map (Fig. 2) and perturbed by

spatially uniform noise on log;oKs (range: -0.5 to 0.5), while aquifer porosity was fixed at 0.15.

3.2 Configuration of Data Assimilation Experiments

320  Each ensemble member underwent a spin-up to achieve hydrologic equilibrium specific to its realization.
This involved two phases: first, ParFlow was run for 100 years using initial groundwater depths averaged

from Bogena et al. (2005), driven by 30-year average recharge derived from climatological inputs
10
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(precipitation and actual evapotranspiration) provided by the German Meteorological Service. Second,
the steady-state output from ParFlow initialized the coupled CLM-ParFlow model, which was then
325 repeatedly forced with 2015 atmospheric inputs for ten years. Following spin-up, DA experiments were
conducted over three years (Jan 1, 2016-Dec 31, 2018), assimilating GWL from 78 wells and SM from
12 CRNS sites using LEnKF. Eleven DA experiments (Table 3) assessed assimilation performance. PAR
denotes joint state-parameter updates. Parameter validation involved applying DA-updated K from one
year to open-loop (OL) simulations in other years (e.g., using 2016-updated K in 2017-2018) for

330  comparison.

Table 3. Summary of the data assimilation experiments conducted. Observational data include groundwater
levels (GWL) and soil moisture (SM). Key variables consist of pressure head (%), soil water content (6), and
hydraulic conductivity (Ks). The terms “unsar” and “sar” distinguish between the unsaturated and saturated

335 domains, respectively. Experiments FC_DA and FC_DA_PAR were performed using the fully coupled
framework, following the methodology described by Hung et al. (2022).

Experiments (abbrev.) Observations State vector GWL and SM local radius
OL - - R
SM_DA SM 0 -
SM_DA_PAR SM 0, log K, -
GWL_DA GWL Dsar -
GWL_DA_PAR GWL hgarr log K, -
FC_DA GWL, SM 0, h Same
FC_DA_PAR GWL, SM 6, h,log K, Same
WC_DA GWL, SM Ounsats Psar Same
WC_DA_PAR GWL, SM Buunsats hsar, 10g K Same
WC_DA_r GWL, SM Ounsats Psar Different
WC_DA r PAR GWL, SM Buunsats sars 10g K Different

3.3 Model Performance Assessment

Simulation outputs from the OL run along with multiple assimilation experiments were evaluated against
340  daily observed data for GWL, SM, and ET. The assessment employed statistical indicators including the
root mean square error (RMSE), unbiased RMSE (ubRMSE), and Pearson’s correlation coefficient (R).

The RMSE at a given time step # was computed using the following formula:

Nobs sim_.,obs N
RMSE, = T -y ), ©)

Nobs

The ubRMSE at each time step ¢ was computed using:

Eli\’:ulbs[(ytsim _}W)_(ygbs _W)]Z

345 ubRMSE, = . (6)
Nobs
Calculation of R is based on the following expression:
S (205 -y 0bs)(ygim-ysTm) )

- 2 P—1
S (vgr5 5985 s, (ygim—ysim)

Here, y,"" denotes the ensemble-mean simulation for the target variable (SM, GWL, or ET) at a given

11
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obs

time step ¢, originating from either an OL or DA experiment, while y,”" refers to the matching observation.
350 N represents the count of available observations at time ¢, and n indicates the overall count of evaluated

temporal intervals.

4. Results
4.1 Univariate Soil Moisture Assimilation

355 Table 4 compares the ubRMSE of SM, ET, and GWL between the baseline OL simulation and the SM-
only assimilation scenarios (SM_DA and SM_DA_PAR), while additional metrics including RMSE and
R for SM and ET are provided in Table S1. Assimilating CRNS SM observations significantly improved
SM prediction accuracy at monitored sites during 2016-2018, as shown in Figures S1-S3. In the SM_DA
scenario, SM ubRMSE and RMSE decreased by over 45% and 50%, respectively. Joint updates of states
360 and parameters (SM_DA PAR) outperformed state-only assimilation. Correlation coefficients for SM
improved notably in DA runs (R = 0.85~0.90) versus OL (R = 0.61~0.63) (Table S1). However, SM
assimilation had limited impact on ET, with RMSE reduced by less than 3% compared to OL. In contrast,
GWL estimates deteriorated slightly when only SM was assimilated, with ubRMSE increasing by around

4%. Parameter updates during SM assimilation had minimal effect on GWL performance.

365
Table 4. Annual unbiased root mean square error of volumetric soil moisture, evapotranspiration, and
groundwater level during 2016-2018 for the open-loop (OL) and univariate soil moisture data assimilation
experiments (SM_DA and SM_DA_PAR).
Experiments
Year Variable
oL SM_DA SM_DA_PAR
2016 0.08 0.05 0.05
2017 SM 0.09 0.04 0.04
2018 (cm’/cm?) 0.09 0.05 0.04
2016-2018 0.09 0.05 0.04
2016 0.63 0.65 0.64
2017 ET 0.66 0.66 0.66
2018 (mm/day) 0.68 0.70 0.70
2016-2018 0.66 0.67 0.66
2016 7.30 6.87 6.79
2017 GWL 724 8.31 7.74
2018 (m) 7.16 7.34 7.06
2016-2018 723 7.51 720
370 Figure 4 illustrates the differences in SM, ET, and GWL between the OL simulation and the

univariate SM assimilation scenarios for the year 2018, with corresponding findings for 2016 and 2017
shown in Figures S4 and S5. In the scenarios involving only state estimation and those involving
simultaneous parameter estimation, assimilation led to distinct spatial changes in SM distribution across
the catchment-marked by increased moisture in the northern areas and a drying trend in the south. For

375 2018, the spatial distribution in annual SM was similar for both the state-only and joint state-parameter
12
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385

390

395

update runs, indicating a limited parameter influence that year. In contrast, the impact of parameter
updates on SM was more pronounced in 2016 and 2017, likely due to differing hydrological conditions.
Specifically, under the wetter conditions of 2016, elevated SM levels enhanced spatial coherence, thereby
increasing sensitivity to parameter adjustments (Li et al., 2023a).

The regional distribution of ET changes closely followed the corresponding SM patterns, indicating
a direct influence of SM assimilation on ET dynamics. Within the southern region of the catchment, both
SM_DA and SM_DA_PAR simulations exhibited reduced ET compared to the OL simulation, consistent
with lower SM levels. In contrast, the northern catchment showed increased ET linked to higher SM
following assimilation. The impact of SM assimilation on ET in the southern region was relatively limited,
with changes generally below 50 mm yr', as ET there was primarily constrained by available energy.
However, in the northern Rur subregion-characterized by lower precipitation-ET responded more
strongly to assimilation, with increases exceeding 100 mm yr* following the rise in SM. Notable spatial
variations in GWL also emerged across certain areas of the catchment after assimilation. Since TSMP is
a comprehensive system, assimilation of SM alone also influenced GWL dynamics. Additionally, due to
the SM localization radius covering the entire basin and the inclusion of lateral groundwater flow in
TSMP, changes in GWL were not confined to areas near CRNS locations. While GWL spatial patterns
showed some alignment with those of SM, they were less consistently matched than the patterns observed

in ET.

SM_DA SM_DA SM_DA
* (a) oo (b) * (c)
3 Yo t " % g
S {ss‘-ﬁ* -V g ‘* e
B IE i N E
A = s ~ % = 3
% B %ot
g T, pes g‘,\

-0.2 -0.1 0.0 0.1 0.2
SM difference (cm3/cm?3)
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Figure 4. Spatial variations in annual soil moisture (0-80 cm), evapotranspiration, and groundwater level for
2018 are shown in panels (a)-(c), depicting the differences between SM_DA and OL simulations (SM_DA
minus OL). Panels (d)-(f) present similar contrasts between SM_DA_PAR and OL (SM_DA_PAR minus OL).
Black pentagrams mark the locations of the CRNS monitoring stations.

400
4.2 Univariate Groundwater Level Assimilation

Table 5 provides an overview of simulation results for GWL, SM, and ET across multiple years,
comparing outputs from the OL and univariate GWL assimilation experiments. The unbiased RMSE of
GWL was evaluated at update points and at validation sites categorized by their distance from these
405 points, with consistent patterns observed across all distance groups. A more detailed assessment of GWL
performance, including RMSE metrics, is available in Table S2. Temporal dynamics of GWL in response
to assimilation are illustrated in Fig. S6, which depicts GWL evolution at 12 monitoring locations.
Substantial improvements in GWL simulations were observed at assimilation sites in the GWL_DA
experiment, where the annual ubRMSE was reduced by approximately 60% relative to the OL run. When
410  both states and parameters were jointly updated in the GWL_DA_PAR experiment, the ubRMSE further
decreased to 2.04 m, corresponding to a ~72% reduction compared to OL. While notable improvements
were evident near assimilation wells, the performance gains declined with increasing distance from these
locations. Joint updating of states and parameters (GWL_DA_PAR) consistently outperformed state-only
updates (GWL_DA). Within the 0~0.5 km ranges from assimilation points, GWL ubRMSE decreased
415 from 6.96 m to 3.78 m, reflecting a 46% improvement. Beyond 0.5 km, ubRMSE in the GWL_DA PAR
experiment remained at least 10% lower than in OL. However, assimilating only GWL did not improve
SM estimates. The SM ubRMSE values in both GWL_DA and GWL_DA_PAR experiments were around
0.09 and 0.11 cm*/cm?, similar to or slightly higher than those in OL (0.09 cm?/cm?). This absence of
enhancement in SM was likewise observed in ET, since univariate GWL assimilation did not improve
420 SM simulations. Consequently, ET simulations exhibited minimal change, with ubRMSE, RMSE, and R

metrics showing negligible differences, as summarized in Table S1.

Table 5. Annual unbiased root mean square error of groundwater level, volumetric soil moisture, and
evapotranspiration for 2016-2018, evaluated for the open-loop (OL) and univariate groundwater level

425 assimilation scenarios (GWL_DA and GWL_DA_PAR). Note: “0” refers to assimilation points; validation
sites are grouped by their distance from these points into three categories: less than 0.5 km, between 0.5 and
2.5 km, and between 2.5 and 5 km.

Experiments
Year Variable Distance
OL GWL _DA GWL _DA_PAR
2016 7.30 3.39 2.03
2017 0 7.24 2.78 2.05
2018 7.16 2.52 2.04
2016-2018 7.23 2.90 2.04
— GWL
2016 7.23 6.54 3.70
(m)
2017 6.95 4.46 4.02
0-0.5km
2018 6.69 3.89 3.62
2016-2018 6.96 497 3.78
2016 0.5-2.5km 5.32 5.84 4.60

14
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2017 526 488 482
2018 5.09 470 463
2016-2018 522 5.14 468
2016 6.37 636 5.12
2017 631 550 4.99

2018 2:3-3km 6.03 529 5.16
2016-2018 6.24 572 5.09
2016 0.08 0.10 0.10

2017 SM 0.09 0.09 0.11

2018 (cm¥em?) i 0.09 0.10 0.11
2016-2018 0.09 0.09 0.1
2016 0.63 0.63 0.63

2017 ET 0.66 0.66 0.66

2018 (m) ’ 0.68 0.68 0.68
2016-2018 0.66 0.66 0.66

Figure 5 illustrates the annual variations in multiple variables by comparing the univariate GWL

430 assimilation scenarios with the OL simulation for 2018, while corresponding results for 2016 and 2017
are provided in Figs. S7 and S8. A 5 km localization radius was applied during groundwater assimilation,

leading to notable GWL variations primarily in the vicinity of the assimilation points. In contrast, the

hilly southern region-characterized by sparse measurement locations-exhibited minimal GWL changes.
Although spatial differences in GWL between the state-only and state-parameter update runs were

435 generally small, several areas in the central catchment experienced distinct GWL adjustments resulting
from parameter updates. Groundwater assimilation also influenced SM estimates, particularly near
assimilation locations where changes in SM closely corresponded to GWL variations. However, since

most CRNS sites were located at greater distances from the assimilated groundwater wells, SM
simulations at those CRNS locations remained largely unaffected. Furthermore, annual SM estimates

440 exhibited only minor differences between the state-only and state-parameter GWL assimilation runs. The
influence on ET was similarly limited to areas surrounding the GWL update points due to the applied
localization radius. It is worth highlighting that the distributions of variations in SM and ET showed

strong consistency across space.

15
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Figure 5. Spatial variations in annual groundwater level, soil moisture (0-80 cm), and evapotranspiration for
2018 are shown in panels (a)-(c), illustrating the differences between GWL_DA and OL simulations
(GWL_DA minus OL). Panels (d)-(f) present similar contrasts between GWL_DA_PAR and OL
(GWL_DA_PAR minus OL). Black hollow circles indicate the locations of groundwater monitoring wells.

450
4.3 Multivariate Data Assimilation of Soil Moisture and Groundwater Level

Table 6 summarizes the ubRMSE values of GWL, SM, and ET from various multivariate assimilation
scenarios between 2016 and 2018. Additional RMSE results for groundwater table depth are provided in
Table S3. Among all experiments, the WC_DA_PAR scenario produced the best-performing groundwater
455 estimates at the assimilated sites, lowering the ubRMSE substantially-dropping it from 7.23 m to 2.05 m,
representing a reduction of nearly three-quarters. A similar level of accuracy was attained by the
GWL_DA_PAR run, yielding a ubRMSE of 2.04 m. At validation sites within 0 to 0.5 km of assimilation
points, the multivariate assimilation of SM and GWL slightly underperformed compared to the
standalone groundwater update in predicting GWL, although the difference was not statistically
460 significant. Across all single- and multi-variable assimilation scenarios, WC_DA _r PAR achieved the
minimum ubRMSE (4.56 m) for GWL predictions within the 0.5~2.5 km range from assimilation sites.
In comparison, the FC_ DA PAR experiment yielded the lowest ubRMSE value (4.91 m) at sites 2.5 to

5 km away from the assimilation points.
In the multivariate DA experiments, SM depiction showed a significant improvement, with

16
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465 WC_DA_PAR and WC_DA_r PAR yielding the greatest ubRMSE decrease of 50%. Detailed RMSE
and R statistics for SM and ET are provided in Table S4. However, SM evaluation results under fully
coupled joint SM and groundwater assimilation scenarios (FC_DA or FC_DA PAR) failed to surpass
the outcomes from SM-only assimilation runs (SM_DA or SM_DA_PAR), suggesting that incorporating
groundwater data did not improve SM representation in the fully coupled system. Multivariate

470 assimilation produced a slight enhancement in ET simulation accuracy, reflected by an approximate 3%
decrease in RMSE, though this was not evident in ubRMSE values. Furthermore, applying parameter
updates had minimal impact on ET simulation results across these experiments.

Table 6. Annual unbiased root mean square error of groundwater level, soil moisture, and evapotranspiration

475 during 2016-2018, evaluated for the open-loop (OL) and multivariate assimilation scenarios (FC_DA,
FC_DA_PAR, WC_DA, WC_DA_PAR, WC_DA_r, and WC_DA_r_PAR). Note: “0” denotes assimilation
locations; validation sites are grouped by their distance from these points into three ranges: less than 0.5 km,
0.5 to 2.5 km, and 2.5 to 5 km.

Year Variable  Distance Experiments

OL FC_DA FC_DA_PAR WCDA WCDAPAR WCDAr WC_DA r PAR

2016 7.30 3.24 2.96 3.14 2.13 324 2.37
2017 0 7.24 4.06 2.88 293 1.98 3.01 2.04
2018 7.16 3.44 3.06 333 2.03 2.57 2.11
2016-2018 7.23 3.58 297 3.13 2.05 2.94 2.17
T2016 723 464 443 4.16 423 441 452
2017 6.95 3.96 3.69 3.94 4.60 427 3.49
2018 0-0.5km 6.69 3.25 3.54 3.93 3.62 3.96 3.61
2016-2018 GWL 6.96 3.95 3.89 4.01 4.15 421 3.87
2016 (m) 532 557 4.72 4.73 7.56 473 4.67
2017 0.5- 5.26 4.75 4.78 4.65 4.73 4.61 4.48
2018 2.5km 5.09 434 4.46 4.66 4.79 4.61 4.52
2016-2018 522 4.89 4.65 4.68 5.70 4.65 4.56
T2016 637 565 5.03 527 8.24 7.54 5.61
2017 6.31 523 5.02 538 552 7.01 7.81
2018 23-5km 6.03 4.89 4.68 530 5.18 5.68 5.10
2016-2018 6.24 5.26 491 532 6.31 6.74 6.17
2016 0.08 0.05 0.05 0.06 0.04 0.06 0.04
2017 SM 0.09 0.06 0.06 0.05 0.04 0.05 0.04
2018 (cm?/cm?) i 0.09 0.08 0.05 0.07 0.04 0.05 0.04
2016-2018 0.09 0.06 0.05 0.06 0.04 0.05 0.04
2016 0.63 0.63 0.64 0.63 0.63 0.64 0.64
2017 ET 0.66 0.66 0.66 0.66 0.66 0.66 0.66
2018 (mm/day) i 0.68 0.70 0.70 0.70 0.70 0.70 0.70
2016-2018 0.66 0.66 0.67 0.66 0.66 0.66 0.66
480 To facilitate comparison, Fig. 6 presents the ubRMSE values from both univariate and multivariate

assimilation runs. In contrast with the OL simulation, the FC_DA and FC_DA_PAR experiments showed
improved ability to reproduce SM and groundwater dynamics. Nonetheless, the results were inferior to
those obtained through individual assimilation of SM or GWL for their corresponding hydrological

variables. Alternatively, the weakly integrated schemes (WC_DA and WC_DA_PAR) yielded improved
17
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485 estimates of SM and GWL relative to the fully coupled configuration. According to Fig. 6, WC_DA r
and WC_DA r PAR demonstrated superior capability in replicating GWL and SM at observation sites
relative to the remaining multivariate assimilation approaches. Within the 2.5 to 5 km range from
assimilation locations, predictive accuracy declined slightly compared to the fully coupled configuration,
possibly attributed to the broader localization radius applied during SM assimilation, which imposed a

490  more pronounced effect on groundwater estimation. By way of reference, assimilating SM alone showed

that updating SM led to decreased accuracy in GWL estimates.
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Figure 6. Comparison of unbiased root mean square error (ubRMSE) for groundwater level (GWL, m) at

495 different distances from assimilation points, alongside soil moisture (SM, cm*cm?®) results from both
univariate and multivariate assimilation runs. Groundwater level metrics are shown on the left y-axis, while
soil moisture values correspond to the right y-axis.

Figure 7 illustrates the annual changes in GWL, SM, and ET for the Rur catchment in 2018,

500 comparing various multivariate assimilation experiments with the OL simulation. Since the results from
combined state-parameter updates closely matched those from state-only updates, only the joint state-
parameter updating results are presented. Outcomes for 2016 and 2017 are presented in Figures S9 and

S10, respectively. In the WC_DA_PAR scenario, changes in GWL estimates were highly consistent with

those from the GWL-only DA runs. This consistency arises from using the same groundwater updating

505 approach, specifically updating only the hydraulic pressure confined to the saturated zone. Notable GWL
variations were also observed in areas without direct groundwater assimilation points. These changes

likely resulted from SM updates within the multivariate assimilation scenarios, particularly in the

FC DA _PAR and WC_DA r PAR experiments. The spatial distribution of SM in the WC_DA r PAR

18



https://doi.org/10.5194/egusphere-2025-2124

Preprint. Discussion started: 10 June 2025
(© Author(s) 2025. CC BY 4.0 License.

510

515

520

525

EGUsphere

run was very similar to that of the univariate SM assimilation, since both used the identical assimilation
localization radius. Due to the smaller 5 km assimilation radius applied in the FC_DA_PAR and
WC_DA_PAR runs, SM changes remained largely limited to areas close to assimilation sites. Significant
variations in annual SM were also detected near groundwater monitoring points in the northern catchment,
indicating that combined assimilation of SM and groundwater influences SM prediction accuracy. The
spatial pattern of ET aligned closely with SM, reflecting ET’s primary control by SM variability.
Moreover, in the multivariate assimilation runs, SM at certain locations adjacent to groundwater
assimilation points was influenced by GWL adjustments, resulting in ET fluctuations that might contrast

with those observed in univariate SM assimilation.
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Figure 7. Spatial variations in the 2018 annual differences of groundwater level, 0-80 cm soil moisture, and
evapotranspiration are presented in panels (a, d, g), showing comparisons between the multivariate data
assimilation scenario FC_DA_PAR and the open-loop (OL) run. Panels (b, e, h) and (c, f, i) display the
corresponding differences for the WC_DA_PAR and WC_DA_r_PAR scenarios, respectively. The locations
of CRNS stations and assimilated groundwater wells are marked by black pentagrams and circles.

To enable a comprehensive comparison between single-variable and multivariate assimilation
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approaches, Figure 8 presents the time-series variations of SM and GWL recorded at a CRNS site and a

monitoring well throughout all assimilation scenarios. The simulated SM patterns from the state-only

(GWL_DA) and state-parameter (GWL_DA_PAR) groundwater assimilation runs closely follow those

of the OL simulation, indicating that assimilating GWL data has little impact on SM estimates for these

scenarios. Likewise, assimilating SM alone produced only minor changes in GWL. When GWL data

were assimilated, the modeled GWL progressively converged toward the observed values gradually.

Within the multivariate assimilation runs, the fully coupled setups (FC_DA and FC_DA_PAR) showed

the largest discrepancies in GWL and SM compared to observations. In general, differences in modeled

SM and GWL were small when comparing assimilation experiments updating both states and parameters

to those updating states alone.
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Figure 8. Temporal dynamics of volumetric soil moisture at the Kall CRNS site and groundwater levels at a
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540 selected observation well throughout 2018 are shown for the open-loop (OL) simulation alongside various
assimilation scenarios. Panels (a-b) present results for the SM_DA and SM_DA_PAR scenarios; panels (c-d)
correspond to GWL_DA and GWL_DA_PAR; panels (e-f) display FC_DA and FC_DA_PAR outcomes;
panels (g-h) illustrate WC_DA and WC_DA_PAR; and panels (i-j) show results for the WC_DA_r and
WC_DA_r_PAR configurations.

545
4.4 Impact of Parameter Ks Updates on Model Performance

Across all DA experiments, incorporating parameter updates consistently outperformed relying solely on
state updates. To assess the performance of the adjusted parameters, they were implemented in OL
simulations for independent years and evaluated against results obtained using the initial parameter set.
550 Table 7 summarizes evaluation metrics-RMSE, ubRMSE, and R, which serve as indicators of model
performance for various variables during the K validation period. Improvements in SM estimates were
attributed to the updated K derived from the SM_DA_PAR scenarios, as reflected by enhanced results
across all evaluation metrics. Applying K values estimated from SM_DA PAR reduced the SM
ubRMSE from 0.09 to 0.08 cm®/cm?® in the OL validation runs. Nevertheless, the updated K did not
555 improve GWL predictions, nor were significant enhancements observed in ET simulations.
Applying the K values updated through the GWL_DA_PAR experiments in OL runs for other
independent years resulted in a slight reduction (less than 2%) in the overall RMSE and ubRMSE of
GWL compared to simulations using the original K. Additionally, enhanced GWL modeling was
observed in unassimilated areas following the incorporation of the revised K. Specifically, within a range
560 of 2.5~5 km from the assimilation points, the modeled GWL improved by approximately 4%, indicated
by a decrease in ubRMSE from 6.24 m to 6.01 m. However, no evident improvements were found in SM
and ET estimates after applying the revised K derived through the univariate GWL assimilation
(GWL_DA_PAR) experiments.
No noticeable improvement in simulated GWL was observed at the assimilation points during the
565 OL validation using the revised K derived from the WC_DA r PAR scenario. Compared to the
GWL_DA_PAR experiment, the K, values estimated from WC_DA r PAR produced more accurate
GWL predictions at unassimilated grid locations. Within the 0~0.5 km and 2.5~5 km ranges from
assimilation points, the GWL ubRMSE decreased by over 4%. Furthermore, the revised K enhanced SM
simulation performance, demonstrated by a reduction in SM ubRMSE from 0.09 cm*cm?® with the
570 original K to 0.08 cm?*/cm? following the WC_DA_r PAR assimilation. Although the revised K obtained
from the WC_DA r PAR scenario brought some improvements, its impact on ET simulation remained

minimal.

Table 7. Summary of performance metrics for simulated groundwater level, volumetric soil moisture, and

575 evapotranspiration across all validation runs during the 2016-2018 period. Note: “0” refers to groundwater
assimilation locations; validation sites are categorized by their distance from these points as follows: less than
0.5 km, 0.5 to 2.5 km, and 2.5 to 5 km.

Variable  Distance Indicators K, from SM_DA_PAR K from GWL_DA_PAR K from WC_DA_r_PAR

GWL 0 RMSE (m) 7.90 7.16 732
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0-0.5km 6.92 6.84
0.5-2.5km 6.54 6.50

2.5-5km 6.98 6.95

0 7.09 7.23

0-0.5km 6.71 6.63
0.5-2.5km WORMSE (m) 77 521 5.17

2.5-5km 6.01 597

RMSE (cm?/cm?) 0.09 0.10 0.09

SM - UbRMSE (cm?/cm?) 0.08 0.09 0.08
R 0.67 0.60 0.68

RMSE (mm/day) 0.75 0.76 0.75

ET - ubRMSE (mm/day) 0.66 0.66 0.66
R 0.83 0.84 0.83

Figure 9 illustrates the differences in the mean spatial values of logoK at soil depths of 2 cm and
580 10 m for the SM_DA_PAR, GWL DA PAR, and WC_DA _r PAR scenarios compared with the
reference OL simulation. The outcomes illustrated correspond to the year 2018, with supplementary
outcomes for 2016 and 2017 provided in Figures S11 and S12. The spatial patterns of K modifications
were consistent across all three years. In the SM_DA_PAR experiment, changes in K occurred both
within the root zone and, indirectly, extended to the saturated zone at 10 m depth. Such modifications in
585 K; may have a significant influence on the accuracy of GWL estimation. Conversely, during the
GWL_DA PAR run, state modifications were limited to the saturated layers, producing pronounced
changes in K; primarily at the groundwater assimilation points in that zone. No significant impact on K

was observed in the unsaturated zone due to these updates.
Within the WC_DA_r PAR scenario, the assimilation processes for SM and GWL were conducted
590 separately. Consequently, modifications in K within the unsaturated zone were projected to mirror the
patterns identified in the SM_DA_ PAR experiment, whereas variations in the saturated layers were
anticipated to correspond to those seen in the GWL_DA_PAR experiment. These findings indicate that
the distribution of K modifications across the affected regions closely match those from the individual
assimilation runs. Nevertheless, due to the interdependence between SM and GWL updates in the joint
595 assimilation, the resulting Ks modifications exhibit more intricate and integrated system behavior, rather
than merely a straightforward combination of changes seen in the separate univariate runs. As a result,

certain areas of the study region exhibited greater variations in K at different subsurface depths.
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600 Figure 9. Spatial comparison of ensemble mean logi0Ks between the open-loop simulation and various data
assimilation schemes for the year 2018. Panels (a) and (d) show results for the SM_DA_PAR scenario; panels
(b) and (e) present outputs for GWL_DA_PAR; panels (c) and (f) depict results for WC_DA_r_PAR. The
upper row corresponds to estimates at 2 cm soil depth, while the lower row represents values at 10 m depth.
Locations of CRNS sites and assimilated groundwater wells are marked by red pentagrams and black circles,
605 respectively.

5. Discussions

5.1 Benefits and Challenges of the New Multivariate Data Assimilation Framework

In this research, we propose an innovative joint DA framework that improves the accuracy of both SM

610 and GWL estimations. When assimilation is limited to a single variable-either SM or GWL-it generally

enhances the assimilated variable but frequently decreases the reliability of the non-assimilated one. The

observed deterioration may stem from spurious inter-variable covariances generated during the state

estimation process. This issue can be partly attributed to the use of ground-based observations, given that

neutron sensing stations and groundwater monitoring wells are unevenly distributed across the study area.

615 When assimilation targets only one state component (e.g., GWL), it is difficult to reduce uncertainties in
hydrologically connected states (such as SM) at non-adjacent spatial locations.

Hung et al. (2022) demonstrated, using a detailed synthetic modeling scenario with TSMP-PDAF

for a southwestern German domain, that restricting updates to the saturated layers alone leads to better

GWL estimation compared to fully coupled DA, which contrasts with earlier studies based on highly

620 simplified synthetic frameworks (Zhang et al., 2018). However, in Hung et al. (2022), the synthetic GWL

and SM data for assimilated locations were situated within a single grid cell. In contrast, this research

was carried out within an actual watershed, where the majority of CRNS SM and groundwater monitoring
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sites are located on different grid cells, allowing for a more precise spatial mapping of SM and GWL
measurements. The results of this research indicate that the novel multivariate assimilation technique

625 introduced here outperforms the fully coupled DA approach employed by Hung et al. (2022) in predicting
system states.

A key advantage of this novel multivariate assimilation method is the application of independent
updates, which allows saturated zone pressure to be updated using GWL observations, while SM
estimates in the unsaturated zone are adjusted based on CRNS-derived measurements. The use of

630  variable-specific localization parameters further improves the representation of their distinct spatial
characteristics, reduces the influence of spatially distant uncertainties during assimilation, and facilitates
more reliable model state corrections, thereby enhancing the overall performance of the integrated
assimilation framework.

Additionally, asynchronous assimilation enables different update intervals for each variable: SM,

635 which varies rapidly, is typically updated daily, whereas groundwater, with slower dynamics, is updated
weekly. This approach allows coupled models to better accommodate the differing timescales of fast-
evolving and slowly changing processes and to assimilate multiple variables from diverse data inputs,
reducing the risk of misleading interactions and limiting spurious correlations. To evaluate the robustness
of this framework, experiments were conducted over the 2016-2018 period, capturing hydrological

640  variability. Despite interannual fluctuations, the results demonstrated stability and reliability throughout
the study period, with improved forecasting accuracy for diverse elements across the coupled surface-
subsurface system. Nonetheless, it is noteworthy that the ubRMSE for GWL within the 2.5 to 5 km range
was higher under the multivariate assimilation scheme than in univariate groundwater assimilation
experiments (6.17 m versus 5.09 m). Consequently, although multivariate assimilation integrates a wider

645 variety of observations than univariate assimilation, it is unable to consistently yield enhanced
performance.

The findings align with those of Botto et al. (2018), who used the CATHY model to investigate an
artificial hillslope and showed that including more variables in the assimilation framework can negatively
impact the prediction accuracy of certain other model variables. They suggested that the filter’s

650 effectiveness was constrained by the poor precision of pressure head measurements. Similarly, Zhang et
al. (2016) attributed the unreliable model outputs observed during joint assimilation of SM and GWL
primarily to unrealistic inter-variable correlations arising from a small number of ensemble members.
Overall, the factors limiting the advantages of multivariate assimilation relative to single-variable
assimilation can vary depending on the model used.

655 Beyond the assimilated state variables, the coupled model’s related ET output was also assessed.
Nonetheless, findings showed that groundwater assimilation failed to enhance ET simulation accuracy,
primarily owing to the insufficient improvement in representing SM. In regions with deeper groundwater
table depth, assimilating GWL had a diminished influence on near-surface SM and ET dynamics. This
study found that assimilating SM data into the integrated models led to some improvements in ET

660  predictions, although these gains were relatively minor. Moreover, multivariate DA did not provide
further improvements in ET simulation accuracy compared to univariate SM assimilation, with the
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positive impact on ET estimates remaining comparable.

5.2 Uncertainty Analysis and Enhancement Strategies

665 This research presents novel strategies for applying multivariate assimilation techniques within
integrated hydrological modeling frameworks. While advancements have been made, unresolved
uncertainties remain and should be addressed in future work. Part of this uncertainty stems from the
model’s use of coarse spatial discretization. Coarser spatial resolution typically smooths terrain features,
which reduces gradients in both surface and groundwater flows and likely contributes to persistent

670 discrepancies in simulated GWL. Future research could explore finer spatial resolutions (e.g., 100 m) to
more accurately represent groundwater systems linked to narrow valleys, thereby minimizing biases
caused by coarse spatial discretization. Additionally, this study does not consider possible systematic err
in the observational datasets. In real-world scenarios, multiple approaches are employed to handle
observational biases during DA, including adjustments for scale mismatches and the use of long-term

675 normalization techniques, as highlighted in earlier research (Zhang et al., 2016; Reichle et al., 2002;
Crow and Van Den Berg, 2010).

Moreover, structural deficiencies in the model may further complicate the implementation of DA
with real-world observations. This study performs GWL assimilation under the simplifying assumption
of hydrostatic equilibrium, despite the fact that real-world conditions are considerably more complex.

680 Multiple aquifers can coexist in a vertically layered system, separated by intervening aquitards.
Additionally, fault lines may act as horizontal barriers that disrupt aquifer continuity, potentially altering
groundwater flow patterns and their spatial distribution. Anthropogenic groundwater withdrawal also
significantly affects aquifers. This is particularly evident in the Rur catchment, where hydrogeological
conditions are strongly influenced by water management practices aimed at preventing water

685 accumulation in open-cast lignite mines (Bogena et al., 2018). By assimilating GWL data, the model can
be better calibrated and its parameters fine-tuned to reflect observed conditions, thereby improving
prediction accuracy while effectively accounting for the complexities of layered aquifer systems,
groundwater withdrawals, and mining-related disturbances.

This study employs SM data derived from CRNS measurements for assimilation. The effectiveness

690 of DA relies on the proper calibration of CRNS data and the use of the weighting function for CRNS data
(see Schron et al., 2017). The COSMIC operator (Shuttleworth et al., 2013) allows for the direct
assimilation of neutron intensity data from CRNS. Currently under development within TSMP-PDAF,
this approach is expected to support future DA applications.

The EnKF, originally developed to address nonlinearity in dynamic modeling systems, has

695 demonstrated effectiveness in coupled terrestrial simulations. However, when applied separately to
individual land surface or subsurface components, it has revealed notable limitations. In this study,
assimilating either GWL or SM individually was found to adversely affect the accuracy of non-
assimilated states. Due to the nonlinear interdependence between SM and GWL (expressed by pressure

head), DA becomes more complex, and multivariate assimilation can introduce significant compromises
25
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700 in filter performance (Camporese et al., 2009b; Shi et al., 2014). This work employed independent DA
strategies targeting integrated hydrologic dynamics to simultaneously enhance SM and GWL estimates.
With the growing accessibility and decreasing costs of RS and ground-based measurements, these
datasets provide valuable opportunities for assimilation. Nonetheless, determining the most suitable
observational inputs and evaluating the compromises associated with integrating diverse variables into a

705 multivariate DA scheme continue to pose major obstacles for upcoming investigations. Potential
strategies to enhance multivariate DA include using different variants of EnKF, combining EnKF with
other filtering methods, or implementing bias-aware filters.

The primary objective of multivariate DA is to enhance the accuracy of both state variables and
associated parameter estimates. This research focused on updating K, identified as a critical parameter

710 for the subsurface groundwater system. Independent validations using the revised K confirmed enhanced
predictions of both GWL and SM. Even though estimating a larger set of parameters is theoretically
possible, Brandhorst and Neuweiler (2023) reported computational stability issues in idealized scenarios
when assimilating SM to estimate subsurface hydraulic properties. As a result, updating the full set of
van Genuchten parameters in practical applications remains challenging. Similarly, Shi et al. (2015)

715 demonstrated through synthetic experiments that simultaneously estimating multiple soil hydraulic
parameters using EnKF becomes increasingly difficult as the number of parameters grows. Their findings
also indicated that incorporating a broader range of data types can improve the accuracy of subsurface
hydraulic parameter estimation. Therefore, future studies will need to integrate diverse datasets within
multivariate assimilation frameworks to effectively update key parameters in coupled surface-subsurface

720  models, ultimately enhancing overall model predictive performance.

The study took place in the Rur catchment, which features a comprehensive and accurate network
of field measurements, including CRNS and groundwater observation sites. These comprehensive
datasets provide a unique opportunity to evaluate the performance of the novel multivariate assimilation
approach within the catchment area. Based on existing information, no other hydrological region offers

725 such a reliable and extensive observation network. To broaden the applicability of this approach, future
studies could focus on integrating more widely accessible datasets, such as terrestrial water storage
variations derived from GRACE/GRACE-FO (Tapley et al., 2019; Khaki et al., 2017) or RS-based SM

products.

730 6. Conclusions

This study investigated various strategies for assimilating groundwater and CRNS SM data collected
from an extensive observation network into the integrated land surface and subsurface model (CLM-
ParFlow) within a German watershed. The benefits and limitations of relying on these datasets
independently were compared with those of employing multivariate DA methods. A novel multivariate
735 DA technique is introduced, in which GWL and SM are weakly coupled through separate phases using
the LEnKF, thereby improving update stability. Assimilating groundwater data adjusts the transition

boundary between the vadose and phreatic zones and updates the hydrological states (and potentially
26
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parameters) within the saturated domain. CRNS-derived SM data is used to modify vadose zone
conditions and may also influence its parameterization. A set of 128 realizations was created by varying
740 both meteorological inputs and subsurface hydraulic parameters. DA simulations were conducted over
the 2016-2018 period. ET data from eddy covariance stations, alongside GWL and SM observations,
served to assess the impact of both univariate and multivariate assimilation on predicting GWL, SM, and
ET. Improvements in model predictions varied across the different DA experiments and years. Generally,
univariate assimilation yielded better accuracy for the assimilated variable; for example, assimilating SM
745 data reduced the ubRMSE for SM by 50% at measurement sites, while assimilating GWL data decreased
the ubRMSE for GWL by 70% at observation points, nearly 50% at 500 m, and approximately 20% at 5
km. However, assimilating GWL data alone negatively affected SM prediction accuracy, and similarly,
assimilating SM data alone reduced the accuracy of GWL estimates.
The simultaneous assimilation of CRNS SM and GWL observations using the conventional
750 integrated model framework fails to provide additional benefits beyond those achieved by single-variable
assimilation and, in fact, is considerably less efficient. However, the newly developed multivariate
assimilation method successfully integrates the strengths of individual univariate assimilation models,
thereby enhancing their respective advantages. As a result, the accuracy of variables estimated under the
multivariate scheme closely matches that obtained from single-variable assimilation. In summary, the
755 combined assimilation of GWL and SM through the novel method offers a clear improvement over
univariate assimilation. Furthermore, improvements in ET estimation are observed only when SM is
included in the assimilation process, whether in univariate or multivariate form. This study highlights the
benefits of jointly assimilating CRNS and groundwater data from observation networks, aiming to
advance terrestrial hydrology modeling within physically based coupled frameworks. Future research
760 should focus on developing multivariate DA techniques that integrate diverse data sources, such as RS
products and ground-based measurements, to enhance the representation of terrestrial system
components at finer spatial scales. Achieving this requires exploring the interrelationships among various
variables within coupled modeling frameworks during joint assimilation and designing improved
assimilation strategies to prevent degradation in the accuracy of non-assimilated states.
765
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